
7.2 Bending Moment Diagrams and Equations for Frames

Configuration	Moment Diagram	Important Values
1.		$H_A = 0$ $R_A = R_B = \frac{1}{2}W$ $v_{Bx} = \frac{W h L^2}{8 E I}$ $M_{\max} = \frac{1}{4}WL \text{ at point } K$
2.		$H_A = W \quad R_A = R_B = W \frac{h}{L}$ $v_{Bx} = \frac{W h^2}{6 E I} (3L + 2h)$ $v_{Cy} = 0 \quad v_{Cx} = \frac{W h^2}{3 E I} (L + h)$ $M_{\max} = Wh \text{ at point } D$
3.		$H_A = W \quad R_A = R_B = 0$ $v_{Bx} = \frac{W h^2}{3 E I} (3L + 2h)$ $M_{\max} = Wh$
4.		$H_A = 0 \quad R_A = R_B = \frac{M_0}{L}$ $v_{Bx} = \frac{M_0 h L}{2 E I}$ $M_{\max} = M_0 \text{ at point } C$

Configuration	Moment Diagram	Important Values
5. 		$H_A = 0 \quad R_A = R_B = \frac{M_0}{L}$ $\theta_K = \frac{M_0 L}{12EI}$ $M_{\max} = \frac{1}{2}M_0 \quad \text{at point } K$
6. 		$H_A = 0 \quad R_A = R_B = \frac{1}{2}p_1 L$ $v_{bx} = \frac{p_1 h L^3}{12EI}$ $M_{\max} = \frac{1}{8}p_1 L^2 \quad \text{at } x = \frac{1}{2}L$
7. 		$H_A = p_1 h \quad R_A = R_B = \frac{p_1 h^2}{2L}$ $v_{bx} = \frac{p_1 h^3}{24EI}(6L + 5h)$ $M_{\max} = \frac{1}{2}p_1 h^2 \quad \text{at point } D$
8. 		$H_A = p_1 h \quad R_A = R_B = \frac{p_1 h^2}{2L}$ $v_{bx} = \frac{p_1 h^3}{24EI}(18L + 11h)$ $M_{\max} = p_1 h^2 \quad \text{at point } D$

Configuration	Moment Diagram	Important Values
9.		$H_A = W \quad R_A = 0 \quad M_A = 0$ $v_{Dx} = \frac{Wh^2}{3EI}(3L + 4h)$ $v_{Dy} = -\frac{WhL}{2EI}(L + h)$ $M_{\max} = Wh \quad \text{at points } B, C$
10.		$H_A = 0 \quad R_A = W \quad M_A = WL$ $v_{Dx} = -\frac{WhL}{2EI}(L + 2h)$ $v_{Dy} = \frac{WL^2}{3EI}(L + 3h)$ $M_{\max} = WL$
11.		$H_A = W \quad R_A = 0 \quad M_A = Wh$ $v_{Dx} = -\frac{Wh^3}{2EI} \quad v_{Dy} = \frac{WLh^2}{2EI}$ $v_{Cx} = \frac{Wh^3}{3EI} \quad v_{Cy} = \frac{WLh^2}{2EI}$ $M_{\max} = Wh \quad \text{at point A}$
12.		$H_A = 0 \quad R_A = 0 \quad M_A = M_0$ $v_{Dx} = \frac{M_0h}{EI}(L + 3h)$ $v_{Dy} = -\frac{M_0L}{2EI}(L + 2h)$ $\theta_D = \frac{M_0}{EI}(L + 2h) \quad M_{\max} = M_0$
13.		$H_A = 0 \quad R_A = p_1 L$ $M_A = \frac{1}{2} p_1 L^2$ $v_{Dx} = -\frac{p_1 L^2 h}{6EI}(L + 3h)$ $v_{Dy} = \frac{p_1 L^3}{8EI}(L + 4h)$ $M_{\max} = \frac{1}{2} p_1 L^2$

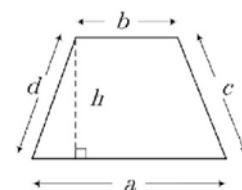
7.3 Geometric Properties of Line and Area Elements:

Centroid Location	Centroid Location	Area Moment of Inertia
		$I_x = \frac{1}{4} r^4 (\theta - \frac{1}{2} \sin 2\theta)$ $I_y = \frac{1}{4} r^4 (\theta + \frac{1}{2} \sin 2\theta)$
Circular arc segment	Circular sector area	
		$I_x = \frac{1}{16} \pi r^4$ $I_y = \frac{1}{16} \pi r^4$
Quarter and semicircle arcs	Quarter circle area	
		$I_x = \frac{1}{8} \pi r^4$ $I_y = \frac{1}{8} \pi r^4$
Trapezoidal area	Semicircular area	
		$I_x = \frac{1}{4} \pi r^4$ $I_y = \frac{1}{4} \pi r^4$
Semiparabolic area	Circular area	
		$I_x = \frac{1}{12} bh^3$ $I_y = \frac{1}{12} hb^3$
Exparabolic area	Rectangular area	
		$I_x = \frac{1}{36} bh^3$
Parabolic area	Triangular area	

Square

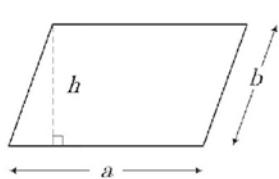
Perimeter: $P = 4a$

Area: $A = a^2$


Rectangle

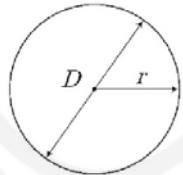
Perimeter: $P = 2(a+b)$

Area: $A = ab$


Trapezoid

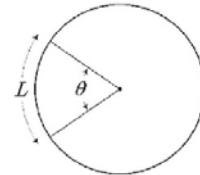
Perimeter: $P = a+b+c+d$

Area: $A = \left(\frac{a+b}{2}\right)h$


Parallelogram

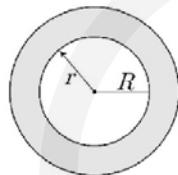
Perimeter: $P = 2(a+b)$

Area: $A = ah$

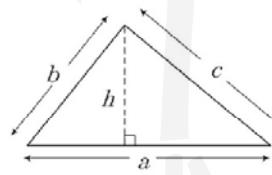

Circle

Perimeter: $P = 2\pi r = \pi D$

Area: $A = \pi r^2 = \frac{\pi D^2}{4}$

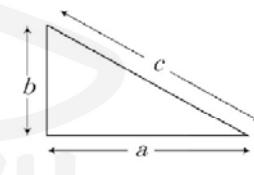

Circular Sector

Arch Length: $L = \frac{\pi r \theta}{180^\circ}$


Sector Area: $A = \frac{\pi r^2 \theta}{360^\circ}$

Circular Ring

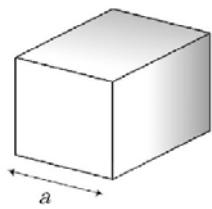
Area: $A = \pi(R^2 - r^2)$


Triangle

Perimeter: $P = a+b+c$

Area: $A = \frac{ah}{2}$

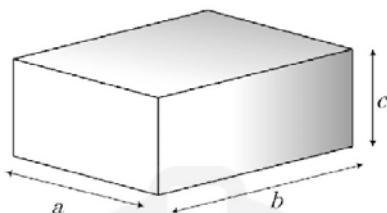
Right Triangle


Perimeter: $P = a+b+c$

Area: $A = \frac{ab}{2}$

Pythagorean theorem:

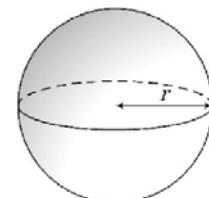
$$c^2 = a^2 + b^2$$


Cube

Surface Area: $A = 6a^2$

Volume: $V = a^3$

Rectangular Solid

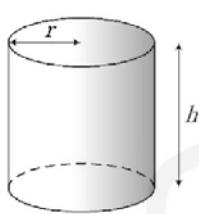


Area:

$$A = 2(ab + ac + bc)$$

Volume: $V = abc$

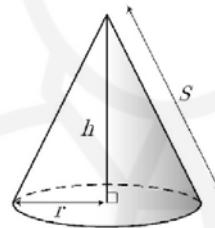
Sphere


Surface Area:

$$A = 4\pi r^2$$

Volume:

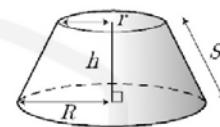
$$V = \frac{4\pi r^3}{3}$$


Cylinder

Surface Area:
 $A = 2\pi r(r + h)$

Volume: $V = \pi r^2 h$

Right Cone

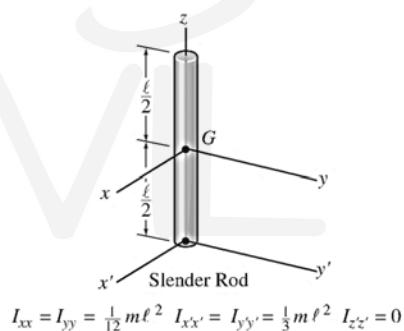
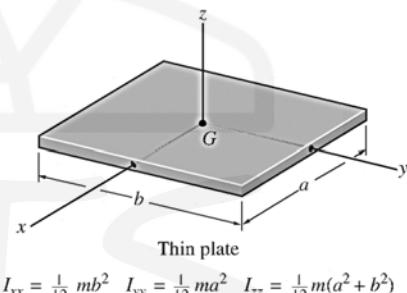
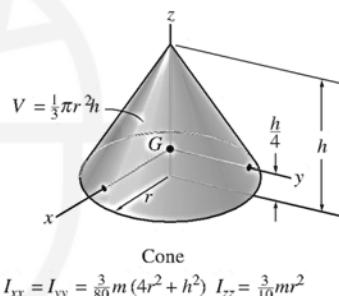
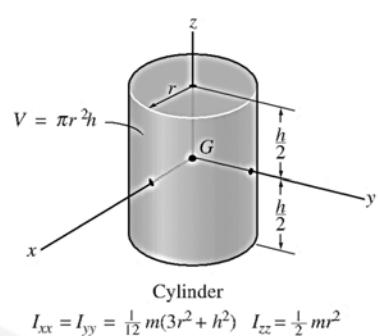
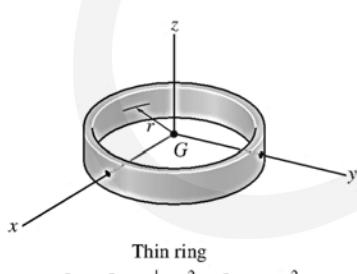
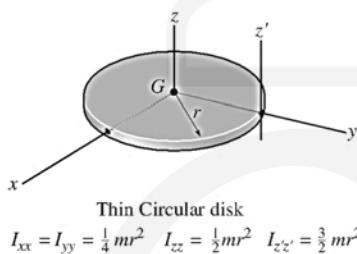
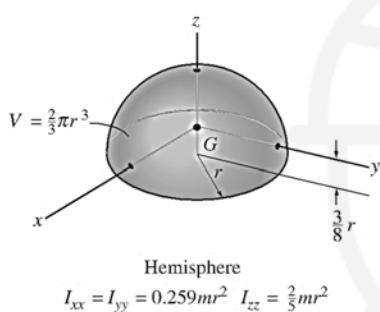
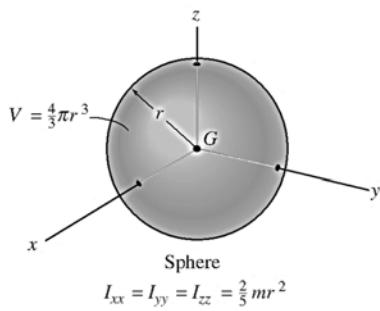


Surface Area:
 $A = \pi r(r + S)$

$$S = \sqrt{r^2 + h^2}$$

Volume: $V = \frac{\pi r^2 h}{3}$

Frustum of a Cone









Area:
 $A = \pi [Q(R-r) + (R^2 - r^2) + RS]$

$$Q = \sqrt{r^2 + \left(\frac{Hr}{R-r}\right)^2}$$

$$S = \sqrt{(R-r)^2 + H^2}$$

Volume: $V = \frac{\pi h}{3} (r^2 + rR + R^2)$

7.4 Center of Gravity and Mass Moment of Inertia of Homogenous Solids:

7.5 Fundamental Equations of Statics:

Cartesian Vector

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$

Magnitude

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Directions

$$\begin{aligned}\mathbf{u}_A &= \frac{\mathbf{A}}{A} = \frac{A_x}{A} \mathbf{i} + \frac{A_y}{A} \mathbf{j} + \frac{A_z}{A} \mathbf{k} \\ &= \cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k} \\ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma &= 1\end{aligned}$$

Dot Product

$$\begin{aligned}\mathbf{A} \cdot \mathbf{B} &= AB \cos \theta \\ &= A_x B_x + A_y B_y + A_z B_z\end{aligned}$$

Cross Product

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Cartesian Position Vector

$$\mathbf{r} = (x_2 - x_1) \mathbf{i} + (y_2 - y_1) \mathbf{j} + (z_2 - z_1) \mathbf{k}$$

Cartesian Force Vector

$$\mathbf{F} = F \mathbf{u} = F \left(\frac{\mathbf{r}}{r} \right)$$

Moment of a Force

$$\begin{aligned}M_o &= Fd \\ \mathbf{M}_o &= \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}\end{aligned}$$

Moment of a Force About a Specified Axis

$$M_a = \mathbf{u} \cdot \mathbf{r} \times \mathbf{F} = \begin{vmatrix} u_x & u_y & u_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Simplification of a Force and Couple System

$$\begin{aligned}\mathbf{F}_R &= \Sigma \mathbf{F} \\ (\mathbf{M}_R)_O &= \Sigma \mathbf{M} + \Sigma \mathbf{M}_O\end{aligned}$$

Equilibrium

Particle

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma F_z = 0$$

Rigid Body-Two Dimensions

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma M_O = 0$$

Rigid Body-Three Dimensions

$$\begin{aligned}\Sigma F_x &= 0, \Sigma F_y = 0, \Sigma F_z = 0 \\ \Sigma M_{x'} &= 0, \Sigma M_{y'} = 0, \Sigma M_{z'} = 0\end{aligned}$$

Friction

$$\text{Static (maximum)} \quad F_s = \mu_s N$$

$$\text{Kinetic} \quad F_k = \mu_k N$$

Center of Gravity

Particles or Discrete Parts

$$\bar{r} = \frac{\sum \tilde{r} W}{\sum W}$$

Body

$$\bar{r} = \frac{\int \tilde{r} dW}{\int dW}$$

Area and Mass Moments of Inertia

$$I = \int r^2 dA \quad I = \int r^2 dm$$

Parallel-Axis Theorem

$$I = \bar{I} + Ad^2 \quad I = \bar{I} + md^2$$

Radius of Gyration

$$k = \sqrt{\frac{I}{A}} \quad k = \sqrt{\frac{I}{m}}$$

Virtual Work

$$\delta U = 0$$

7.6 SI Prefixes:

<i>Multiple</i>	<i>Exponential Form</i>	<i>Prefix</i>	<i>SI Symbol</i>
1 000 000 000	10^9	giga	G
1 000 000	10^6	mega	M
1 000	10^3	kilo	k
<i>Submultiple</i>			
0.001	10^{-3}	milli	m
0.000 001	10^{-6}	micro	μ
0.000 000 001	10^{-9}	nano	n

7.7 Conversion Factors (FPS) to (SI)

<i>Quantity</i>	<i>Unit of Measurement (FPS)</i>	<i>Equals</i>	<i>Unit of Measurement (SI)</i>
Force	lb		4.448 N
Mass	slug		14.59 kg
Length	ft		0.3048 m

7.8 Conversion Factors (FPS):

1 ft = 12 in. (inches)
1 mi. (mile) = 5280 ft
1 kip (kilopound) = 1000 lb
1 ton = 2000 lb